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EFFICIENT TWO WRITE WOM CODES,
CODING METHODS AND DEVICES

PRIORITY CLAIM AND REFERENCE TO
RELATED APPLICATION

The application claims priority under 35 U.S.C. §119 and
all applicable treaties and statutes from prior provisional
application Ser. No. 61/353,419, which was filed Jun. 10,
2010, and is incorporated by reference herein.

FIELD

A field of the invention is data coding and compression.
Embodiments of the invention provide WOM (Write Once
Memory) coding methods and devices.

BACKGROUND

A Write Once Memory (WOM) is a storage medium with
binary memory elements, called cells, that can change from
the zero state to the one state only once, except, in some types
of memory, upon a block erase. WOM-codes were originally
designed for memories that consist of binary memory ele-
ments that could physically only be changed from a zero state
to a one state. Examples of such memories are punch cards
and optical disks. More recently, WOM-codes have been
designed for general usage in different types of memories,
including flash memories. See, e.g., A. Jiang, “On the Gen-
eralization of Error-Correcting WOM-codes,” in Proc. IEEE
Int. Symp. Inform. Theory, pp. 1391-1395, Nice, France
(2007); A. Jiang and J. Bruck, “Joint coding for flash memory
storage,” in Proc. IEEE Int. Symp. Inform. Theory, pp. 1741-
1745, Toronto, Canada, (July 2008); H. Mandavifar, P. H.
Siegel, A. Vardy, J. K. Wolf, and E. Yaakobi, “A Nearly
Optimal Construction of Flash Codes,” in Proc. IEEE Int.
Symp. Inform. Theory. pp. 1239-1243, Seoul, Korea, (July
2009).

A WOM-code allows the reuse of a write-once medium by
introducing redundancy into the recorded bit sequence and, in
subsequent write operations, observing the state of the
medium before determining how to update the contents of the
memory with a new bit sequence.

A simple example enables the recording of two bits of
information in 3 memory elements, twice. The encoding and
decoding rules for this WOM-code are described in a tabular
form in the table below. It is easy to verify that after the first
2-bit data vector is encoded into a 3-bit codeword, if the
second 2-bit data vector is different from the first, the 3-bit
codeword into which it is encoded does not change any code
bit 1 into a code bit 0, ensuring that it can be recorded in the
write-once medium.

Data Bits First Write Second Write
00 000 111
10 100 011
01 010 101
11 001 110

The sum-rate of the WOM-code is the sum of all the indi-
vidual rates for each write. While there are different ways to
analyze the efficiency of WOM-codes, we find that the appro-
priate figure of merit is to analyze the sum-rate under the
assumption of a fixed number of writes. In general, the more
writes the WOM-code can support, the better the sum-rate it
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2

can achieve. The goal is to give upper and lower bounds on the
sum-rates of WOM-codes while fixing the number of writes t
to a desired number.

SUMMARY OF THE INVENTION

An embodiment of the invention provides a family of
2-write WOM-codes, preferred embodiments of which pro-
vide improved WOM-rates. Embodiments of the invention
provide constructs for linear codes C having a 2-write WOM-
code. Embodiments of the invention provide 2-write WOM-
codes that improve the best known WOM-rates known to the
present inventors at the time of filing with two writes. Pre-
ferred WOM-codes are proved to be capacity achieving when
the parity check matrix of the linear code C is chosen uni-
formly at random.

Preferred embodiments of the invention provide an elec-
tronic device utilizing an efficient coding scheme of WOM-
codes with two write capability. The coding method is based
on linear binary codes and allows the electronic device to
write information to the memory twice before erasing it. This
method can be applied for any kind of memory systems, and
in particular for flash memories. The method is shown to
outperform all well-known codes.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 plots computer search determined rates and theo-
retical capacity for prior WOM-codes;

FIG. 2 illustrates a Blackwell channel;

FIG. 3 plots computer search determined rates and theo-
retical capacity of the Blackwell channel;

FIG. 4 illustrates a [3,3:4,3,2] three-write WOM-code.

DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENTS

The invention addresses two problems related to 2-write
WOM-codes 1) The number of messages written to the
memory on each write is the same; 2) Different number of
messages can be written on each write. For the case of 2-write
WOM-codes, the theoretical bound on the WOM-rate for the
first problem is approximately 1.5458 and in the second prob-
lem it is approximately 1.58. Since the best known WOM-rate
for the first problem is approximately 1.34 and 1.37 for the
second problem, there is still room for improvement in clos-
ing these gaps. The invention provides a family of 2-write
WOM-codes, preferred embodiments of which provide
improved WOM-rates. Embodiments of the invention pro-
vide constructs for linear codes C having a 2-write WOM-
code. Embodiments of the invention provide 2-write WOM-
codes that improve the best known WOM-rates known to the
present inventors at the time of filing with two writes. Pre-
ferred WOM-codes are proved to be capacity achieving when
the parity check matrix of the linear code C is chosen uni-
formly at random.

Preferred embodiments of the invention provide an elec-
tronic device utilizing an efficient coding scheme of WOM-
codes with two write capability. The coding method is based
on linear binary codes and allows the electronic device to
write information to the memory twice before erasing it. This
method can be applied for any kind of memory systems, and
in particular for flash memories. The method is shown to
outperform all well-known codes.

Preferred embodiments of the invention are applicable to
memories having cells that can change their state from zero to
one but not from one to zero except upon an erase of the entire
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memory. Preferred embodiments of the invention are t-write
WOM-codes that conform to Thoerem 1 in the description
below.

Preferred embodiments of the invention will now be dis-
cussed with respect to the drawings. The drawings may
include schematic representations, which will be understood
by artisans in view of the general knowledge in the art and the
description that follows. Features may be exaggerated in the
drawings for emphasis, and features may not be to scale.

Two-Write WOM-Codes

Preferred embodiment methods and devices use a two-
write WOM-codes construction that reduces the gap between
the upper and lower bound on the sum-rates for both fixed-
and unrestricted-rate WOM-codes. In Reference [28], a
“coset-coding” is used only on the second write in order to
generate an e-error two-write WOM-codes. However, in e-er-
ror two-write WOM-codes, the second write is not guaranteed
in the worst case but is allowed with high probability. Meth-
ods and codes of the invention guarantee from every linear
code a two-write WOM-code. A “coset-coding” scheme only
on the second write is used as in Reference [28], but the first
write is modified such that the second write is guaranteed in
the worst case. Preferred specific embodiment WOM-codes
have better sum-rates than the previously best known codes
discussed above. Preferred embodiment WOM-codes choose
uniformly at random the parity-check matrix of the linear
code, such that there exist WOM-codes that achieve all points
in the capacity region of two-write WOM-codes. An example
application of a preferred method generate from each two-
write WOM-code a code for the Blackwell channel.

A. Two-Write WOM-Codes Construction

Let C[n,k] be a linear code with parity-check matrix R .
For each ve{0,1}” we define the matrix R , as follows. The
i-thcolumnof R |, 1=i=n, is thei-th column of R ifv,~0and
otherwise it is the zeros column. The set Vc is defined to be

Ve={ve{0,1}"lrank( R )=n-k}. (1)

We first note the following position. If a vector v belongs to
Ve, its weight is at most k.

The support of a binary vector v, denoted by supp(v), is the
set {i/v;/=1}. The dual of the code C is denoted by CL. The
next lemma is a variation of a well known result (see e.g.
Reference [5]).

Lemma 1. Let C[n, k] be a linear code with parity-check
matrix R . For each vector ve{0, 1}”, rank(R ,)=n-k if and
only if v does not cover any non-zero codeword in CL.

Lemma 1 implies that if two matrices are parity-check
matrices of the same linear code C, then their corresponding
sets V¢ are identical, and so we can define the set V¢ to be

Ve={ve{0, 1}"Iv does not cover any non-zero ceCL}.

The next theorem presents the preferred embodiment two-
write WOM-codes,

Theorem 1.

Let C[nk] be a linear code with parity-check matrix
R and let Vc be the set defined in (1). Then there exists an
[0,2; Vel 277%] two-write WOM-code of sum-rate

log,| Ve + (n— k)
n

The two-write WOM-code can be proven by showing the
existence of the encoding and decoding maps on the first and
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4

second writes. First, let {v,, v,, . .. v, Iv_l} be an ordering of
the set Vc. The first and the second writes are implemented as
follows.

1) On the first write, a symbol over an alphabet of size IV |
is written. The encoding and decoding maps E,, D, are
defined as follows. For each me{1, . .., 1V_I}, E; (m)=v,, and
D, (v, )=m.

2) On the second write, we write a vector s, of n—-k bits. Let
v, be the programmed vector on the first write and s,=R |,
then

Ey(s5,vy)=vy+vs,

where v, is a solution of the equation R ;v,=s,+s,. For the
decoding map D,, if ¢ is the vector of programmed cells, then
the decoded value of the n—k bits is given by D,(c)=R c=
R v+ R V,=5,+5,+5,75,.

The success of the second write results from the condition
that for every vector veV_, rank (R ,)=n-k.

There is no condition on the code C and therefore we can
use any linear code in this construction, though we seek to
find codes that maximize the sum-rate

log,|Ve| + (n— k)
—

Next, we show two examples of two-write WOM-codes that
achieve better sum-rates than the previously best known ones.

Example 1

This example demonstrates how Theorem 1 works for the
[16,5,8] first order Reed-Muller code and demonstrates a rate
of 1.4566. Its dual code is the [16,11,4] second order Reed-
Muller, which is the extended Hamming code of length 16.
Hence, we are interested in the size of the set

V,={ve{0,1}'°| v does not cover any ce[16,11,4]}.

According to Equation (1), the set V; does not contain
vectors of weight greater than five. This extended Hamming
code has 140 codewords of weight four and no codewords of
weight five. The set V, consists of the following vector sets.

1) All vectors of weight at most three. There are 2,_,>(,;* %)=
697 such vectors.

2) All vectors of weight four that are not codewords. There
are (,*)-140=1680 such vectors.

3) All vectors of weight five that do not cover a codeword
of weight four. There are (;')-12-140=2688 such vectors.
Since the minimum distance of the code is four, a vector of
weight five can cover at most one codeword of weight four.

Therefore, we get IV,|=697+1680+2688=5065 and the
sum-rate is

(log>(5065)+11)/16=1.4566.

It is possible to modify this WOM-code such that on the
first write only 11 bits are written. Thus, we achieve a two-
write fixed-rate WOM-code and its sum-rate is 22/16=1.375,
which is the best known fixed-rate WOM-code.

Example 2

In this example we will use the [23,11,8] Golay code. Its
dual code is the [23,12,7] Golay code so we are interested in
the size of the set V,={ve{0, 1}** Iv does not cover any ce[23,
12,71}.

According to Equation (1), there are no vectors of weight
greater than 11 in the set V,. The invention achieves a rate of
1.4632. The [23,12,7] Golay code has A,=253 codewords of
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5
weight seven, A,=506 codewords of weight eight, and
A, ,=1288 codewords of weight 11. The set V, consists of the
following vector sets.

1) All vectors of weight at most 6. This number of vectors
is 2, ,%(>*)=145499.

2) All vectors of weight between 7 and 10 besides those that
cover a codeword of weight 7 or 8. Since the minimum
distance of the code is 7 every vector can cover at most one
codeword. Hence, this number of vectors is

16 15
_ ]—Ag- § ( ]:2459160.
i-7 i-8

=8

3) All vectors of weight 11 that are not codewords and do
not cover a codeword of weight either 7 or 8. This number was
shown in [6] to be 695520.

Therefore, for the [23,11,8] Golay code we get
[v,1=145499+2459160+695520=3300179, and thus the sum-
rate is

(log>(3300179)+12)/23=1.4632.

B. Random Coding

The preferred coding and coding methods consistent with
FIG. 1 can be shown to work for any linear code C. Given a
linear code C[n,k] with parity-check matrix H_, we denote

g2| Vel

RO = R €)=

so the sum-rate of the generated WOM-codes is

log,|Vol+r—k
R1(C)+Ra(C) = &+_

Our goal in this subsection is to show that it is possible to
achieve the capacity region C, of a t-write WOM-code by
choosing uniformly at random the parity-check matrix of the
linear code C. We prove that in the following theorem.

Theorem 2.

For any (R;, R,)eC, and €>0 there exists a linear code C
satistfying R, (C)zR, -€, R,(C)=R ,—€.

Proof: Let pe[0,0.5] be such that R <h(p) and R,<1-p. Let
k=[np] for n large enough and let us choose uniformly at
random an (n-k)xn matrix H. The matrix twill be the parity-
check matrix of the linear code C that will be used to construct
the two-write WOM-code. For each vector ve{0, 1}”, let us
define the indicator random variable X, ('R ) on the space of
all matrices as follows

1 ifveVe

0 otherwise

Xy(H) ={

where Ve is the set defined in Equation (1). Note that choos-
ing the matrix R uniformly at random induces a probability
distribution on the set V¢ and thus a probability distribution
ontherandomvariable X, (R ). Then the number of vectors in
Ve is X(R F2ve{0,1}" X, (R ), and

6

2
ELX(H)] @

velo,1)”

EIX,(H)] D PrX,(H) =1}

vel(o,1}”

We maintain that Pr {Xv (H)=1} depends on v only through
its weight, wt (v). In this case, (2) simplifies to

10

n

n
Z( ; ]Pr{Xv:wr(v):i(H) =1}
=0

E[X(H)] =

k

n
15 =Z( i]Pr{XV:Wr(v):i(H): 1},

i=0

because if wt(v)zk-1 then X =0 (Equation (1)).

Now, let us determine the value of Pr {X, (H)=1} for a
vector v of weight O<i<k. Note that veVc if and only if the
sub-matrix of size (n-k)x(n-wt (v)) induced by the zero
entries of the vector v is full rank. It is well known, that if we
choose an mxn matrix, where m=n, uniformly at random then
the probability that it is full rank is IT,_,_,,, ,”(1-2-1). There-
fore, if we choose an (n-k)x(n-1) matrix uniformly at random
then the probability that it is full rank is IT,_,_,, ,”~"(1-279).
Note that

25

30

NI’—‘
NI’—‘

[l

Jk=i+l =

(12~ f)>]_[(1—2 f)>(1——][ iz J]
and hence, Pr{X (H)=1}=I1,_, ,,,”"(1-27)>V4 According
to Lemma 4.8 in Reference [24],

40

and, therefore, we get
45

E[X(H)] = ( 1_[ (1 =271y > M} 2wt

=0 J=k—i+l

50

It follows that there exists a parity-check matrix R of a
linear code C, such that the size of the set V¢ is at least

55
2nh(£)727l0g2(n+1)
and
60
k 2+1 +1 2+1 +1
RIC) > h(—] ng(" ) s - 2wt o
n n
1
R(C) = = (1 P)——Bﬂz—f
65

for n large enough.
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Random coding was proved to be capacity-achieving by
constructing a partition code References [14], [9]. However,
the present random coding method has more structure that
enables to look for WOM-codes with a relatively small block
length. We ran a computer search to look for such WOM-
codes. The parity-check matrix of the linear code C was
chosen uniformly at random and then the size of the set Vc
was computed. The results are shown in FIG. 1. Note that if
(R;, R,) and (R;, R,) are two achievable rate points then for
each teQ the point (tR | +(1-) R ,, tR ;+(1-t) R ,) is an
achievable rate point, too. This can simply be done by block
sharing of a large number of blocks. Therefore, the achievable
region is convex.

We ran a computer search to find more two-write WOM-
codes with high sum-rates. For fixed-rate WOM-codes, our
best construction achieved by a computer search has sum-rate

28 1.4546
3oL

and for unrestricted-rate WOM-codes our best computer
search construction achieved sum-rate 1.4928. The number of
cells in these two constructions is 33.

The encoding and decoding maps of the second write are
implemented by the parity-check matrix of the linear code C
as described in the proof of Theorem 1. A naive scheme to
implement the encoding and decoding maps of the first write
is simply by a lookup table of the set Vc. However, this can be
done more efficiently using algorithms to encode and decode
constant weight binary codes. There are several works which
efficiently encode and decode all binary vectors of length n
and weight k and can be used; see for example References [2],
[71, [19], [25], [26]. These works can be easily extended to
construct efficient encoder and decoder maps to the set of all
binary vectors of length n and weight at most k, denoted by

B(nk)={ve{0,1}"Isupp(v)<k}.

The set Ve is a subset of the set B(n, k). Therefore, we can
use these algorithms while constructing a smaller table, only
for the vectors in the set B(n,k)\V . as follows. Assume that f:
{1,...,1B(n,k)I }—=B(n,k) is a one-to-one and onto map such
that the complexity to calculate f and f~! is efficient. Assume
we list all the vectors in B(n,k)\V . such that we list for every
vector veB(n,k)\V . its value 7'(v) and this list is sorted
according to the values of f~'(v). Then, a mapping g:
{1,..., IV I}—=V_is constructed such that for all xe{1, . ..
IV I}, g(x)=f(x+a(x)), where a(x) is the number of vectors in
B(n,k)\V . of value less than x. The time complexity to cal-
culate a(x) is a(x) is O(log,(IB(n,k)\V .I)) since this list is
sorted. Similarly, for all veV ., g~'(v)=f 1 (v)-a(Ff*(v)).

In many cases, the size of the set B (k,n)\Vc will be sig-
nificantly smaller than the size of Vc. For example, for the
Golay code [23,11,8] the size of Ve is 3300179 while the size
of B(23, 11)\Vc is

11
n
( . ] —3300179 = 894125.
i

i=0

Similarly, for the Reed-Muller code [16,5,8] the size of the set
Ve is 5065 while the size of the set B(16, 5)\Vc is 1820.
C. Application to the Blackwell Channel

The Blackwell channel, introduced first by Blackwell [1],
is one example of a deterministic broadcast channel. The
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8

channel is composed of one transmitter and two receivers.
The input to the transmitter is ternary and the channel output
to each receiver is a binary symbol. Let u be the ternary input
vector to the transmitter of length n. For 1<i=n, f(u,)=(f(u,),,
f(u,),), is a binary vector of length two defined as follows
(FIG. 2):

$0)=(0,0), F(1)=(0,1), F(2)=(1,0).
The binary vectors f, (u), f,(u) are defined to be
F1@)=F @), w2y, - -, Fl)),

Fa(e)=(f (u11)2, F@2)2, - - - F(th)2)s

and are the output vectors to the two receivers.

The capacity region of the Blackwell channel was found by
Gel’fand [11] and consists of five sub-regions, given by their
boundaries:

{(RLR,)I0=R <Y, R,=1}, i)
{(Rth)‘Rlzl—P: Ry=h(p), 1/351751/2}, 2)
{(R,R,)IR Ry=log, 3,%4=<R <log,3-%4}, 3)
{(RR)IR =h(p), Ry=1-p, Yasp=ii}, 4)
{(RLR>)IR,=1,0sR,s15}. 5)

The connection between the Blackwell channel and two-
write WOM-codes was identified by Roth [23]. The next
theorem shows that from every two-write WOM-code of rate
(R;, R,) it is possible to construct codes for the Blackwell
channel of rates (R,R,) and (R,,R,).

Theorem 3.

If (R,,R,) is an achievable rate of a two-write WOM-code,
then (R, R,) and (R,, R,) are achievable rates on the Black-
well channel. Proof Assume that there exists a [n, 2; 2751, 2%2]
two-write WOM-code and letE |, E, and D,, D, be its encod-
ing and decoding maps. We maintain that there exists a coding
scheme for the Blackwell channel of rate (R, R,). Let (m,,
my)e{l, ..., 2" Ix{1, ..., 272} be two messages and let
v,=E,(m,) and v,=E,(m,,v,). Let u be a ternary vector of
length n defined as follows. For 1<i=n, u=f"'(v, ,, v;,). The
vector u is well-defined since for all 1=i=n, (v, ,, v, )=(1,0)
and hence (v, ;, v,,)=(1,1). The vector u is the input to the
transmitter. Then, the vector f,(u) is transmitted to the first
receiver and the vector f,(u) to the second receiver. Note that
F,(=v, and f,(u)=v,. Therefore, the first receiver decodes
its message according to D ,(f,(u))=D ,(v,)=m, and the
second receiver decodes its message according to
D »(F()=D 5(vo)=m,.

Similarly, itis possibleto achieve the rate (R,, R ). Now we
let v,=E,(m,) and v,=E, (m,, v,). The vector u is defined as
ui:f"l(ﬂ, v, ;) for 1=i=n. The decoded message by the first
receiver is D, (f, (1)) and D, (f, (1)) is the decoded message by
the second receiver.

It is possible to define the Blackwell channel differently
such that the forbidden pair of bits is not (1, 1) but another
combination. Our construction of the codes can be adjusted
accordingly.

Now, we can use our two-write WOM-codes in order to
define codes for the Blackwell channel. By using time shar-
ing, the achievable region is convex and hence we get in FIG.
3 the capacity and achieved regions for the Blackwell chan-
nel.

Multiple-Write WOM-Codes

The invention also provides WOM-code constructions
which reduce the gaps between the upper and lower bounds
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on the sum-rates of WOM-codes for 3=t<10. First, we gen-
eralize the two-write WOM-code construction from above for
non-binary cells. Then, we show how to use these non-binary
two-write WOM-codes in order to construct binary multiple-
write WOM-codes. We start with specific constructions for
three- and four-write WOM-codes, and then show a general
design approach that works for an arbitrary number of writes.

A. Non-Binary Two-Write WOM-Codes

Suppose now that each cell has q levels, where q is a prime
number or a power of a prime number. We start by choosing
a linear code C[n,k] over GF(q) with a parity-check matrix
R ofsize (n—k)xn. For a vector v of length n over GF(q), let
R (v) be the matrix R with zero columns replacing the
columns that correspond to the positions of the non-zero
values in v. Then we define

V. @={ve(GF(q)y"lrank(H(v))=n~k}. 3)

Next, we construct a non-binary two-write WOM-code
[n,2; IV 9|, ¢**] in a similar manner to the construction in
Section I'V. Since the proof of the next theorem is very similar
to the proof of Theorem 4 we omit it. A complete proof can be
found in [18].

Theorem 4.

Let C[nk] be a linear code with parity-check matrix
R over GF(q) and let V@ be the set defined in (3). Then
there exists a g-ary [n,2; IV 9|, "] two-write WOM-code
of sum-rate

1og2|v§‘7)| + (n—k)logyg
- .

As was shown in the binary case, there is no restriction on the
choice of the linear code C or the parity-check matrix R .
Every such code/matrix generates a WOM-code. For a linear
code C we define

log, Véq)|

(n—k)log,q
n n

RI(C) = and Ry (C) =

so the sum-rate of the generated WOM-code is R, (C)+R,, (C).
The capacity region of the achievable rates by this construc-
tion is

& = {(7{1, Ra)

-1
ape[o,q—],
q

Ry < h(p) + plogy(g — 1), Ry < (1 - pllogy(@)}.

Theorem 5.
Forany R ,, R',)€C, and e>0, there exists a linear code
C satisfying R, (C)zR, —€, R,(C)=R,-€.

The next corollary provides the best achievable sum-rate of
the construction.

Corollary.

For any q-ary WOM-code generated using our construc-
tion, the highest achievable sum-rate is log, (2q-1).
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Proof: First, note that

g-1 q
p) + plogs(g =1+ (1= plogag = plogs( o= |+ (1 = plogs [ ).

and since the function f(x)=log, x is a concave function

g-1 q g-1 q
plog, +(1 - pllog < log (p'— +(1—p)—]:
" p l-p T I-p
log,(2g - 1).
Also, for
_a-!
Pt

the achievable sum-rate is log,(2q-1). Therefore, there exists
a WOM-code produced by our construction with sum-rate
log, (2q-1).

On the other hand, any WOM-code resulting from our
construction satisfies the property that every cell is pro-
grammed at most once. This model was studied in Reference
[9] and the maximum achievable sum-rate was proved to be
log, (29-1). Therefore, our construction cannot produce a
WOM-code with a sum-rate that exceeds log,(2q-1).

This construction does not achieve high sum-rates for non-
binary two-write WOM-codes in general. While the best
achievable sum-rate of the construction is log, (2q-1), the
upper bound on the sum-rate is log,(2q—1). The decrease in
the sum-rate in our construction results from the fact that cells
cannot be programmed twice. That is, if a cell was pro-
grammed on the first write, it cannot be reprogrammed on the
second write even if it did not reach its highest level. In fact,
it is possible to find non-binary two-write WOM-codes with
better sum-rates. However, the goal is not to find efficient
non-binary WOM-codes. Rather, the non-binary codes that
we have constructed can be used in the design of binary
multiple-write WOM-codes.

For the construction of binary multiple-write, we use
WOM-codes over GF(3). We ran a computer search to find
such a ternary two-write WOM-code of sum-rate 2.2205, and
we will use this WOM-code in order to construct specific
multiple-write WOM-codes.

B. Three-Write WOM-Codes

We start with a construction for binary three-write WOM-
codes. The construction uses the WOM-codes found in the
previous subsection over GF(3).

Theorem 6.

LetC,bean[n,2;” R ,2" R ?] two-write WOM-code over
GF(3) constructed as above in Section A. Then, there exists a
[2n, 3:2" R 2" R 2, 2”] three-write WOM-code of sum-rate

Rl +Ry+1
—

Proof: We denote by E, , and B, , the encoding maps of the
first and second writes, and by D5 ; and D; , the decoding
maps of the first and second writes of the WOM-code C;,
respectively. The 2n cells of the three-write WOM-code we
construct are divided into n two-cell blocks, so the memory-
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state vector is of the form ((c, ;, ¢, 5), €21, Ca2)s - - -, (€, 15
¢,,»))- In this construction we also use map ¢: GF(3)— (GF
(2), GF2)) defined as follows:

$(0)=(0,0),
P(1)=(1,0),

P2)=(0,1),

The map ¢ extends naturally to ternary vectors v=(v,, ...,
v, )eGF(3)” using the rule

POI=@M); - - -, 6(),

On the pairs (c,c') in the image of @, we define &~ '(c,c") to
indicate the inverse function. The map o~ is extended simi-
larly to work over vectors of such bit pairs. We are now ready
to describe the encoding and decoding maps for a three-write
WOM-code.

1) On the first write, a message in from the set {1, ..., 2"
R '} is written in the 2n cells:

€ (m):q’(ﬁs,l (m)).

The decoding map is defined similarly, where ¢ is the
memory-state vector:

D (0=D, ¢ ).

2) On the second write, a message in from the set {1, . . .,
2"R 2} is written in the 2n cells as follows. Let ¢ be the
programmed vector on the first write. Then,

&(m, C):¢(63,2(m1¢71(0))-

That is, first the memory-state vector ¢ is converted to a
ternary vector. Then, it is encoded using the encoding E; , and
the new message, producing a new ternary memory-state
vector. Finally, the last vector is converted to a 2n-bit vector.
The decoding map is defined as on the first write:

D,0=D 5507

According to the construction of the WOM-code C;, no
ternary cell is programmed twice and therefore each of the n
pairs of bits is programmed at most once.

3) On the third write, an n-bit vector v is written. Let
c=((c1,15 €150 - - -5 (€, 15 €, »)) be the current memory-state
vector. Then,

Eswo)=((c'LuC"12) - - -

is a vector, defined as follows. For 1=i=n, Yc', |, ', ,)=(1,1) if
v/~1 and otherwise (¢', ;, ¢', ,). It is always possible to pro-
gram the pair of bits to be (1, 1) since at most one cell in each
pair was previously programmed. The decoding map D,(c) is
defined to be

(¢ ,n,pcln,z))

Dy (C):(Cl,l C1os s Cn,1 'Cn,z)-

That is, the decoded value of each pair of bits is one if and
only if the value of both of them is one.

Corollary.

The best achievable sum-rate of a three-write WOM-code
using this construction is (log, 5+1)/2=1.66.

Proof: Given a two-write WOM-code C; over GF(3) with
rates (R, R,), the constructed binary three-write WOM-code
has rates (R,/2, R,/2, ¥4) and its sum-rate is R=(R ; +R,+1)/2.
This sum-rate is maximized when R, +R, is maximized. But
R,;+R, is the sum-rate of the two-write WOM-code over
GF(3), which was proven in Corollary 9 to be maximized at
log, 5. Then the maximum achievable sum-rate of the con-
structed binary three-write WOM-code is
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log,5+1

~ 1.66.
2

Using the construction of WOM-codes over GF(3) pre-
sented above, we can construct a three-write WOM-code of
sum-rate (2.2205+1)/2=1.6102.

C. Four-Write WOM-Codes

We next present a construction for four-write binary
WOM-codes.

Theorem 7.

LetCy bean [n,2;27%; | 2%, ,] two-write WOM-code over
Equation (2) constructed as above. Let C, be an [n,2;2"R2,1,
2%, ;] binary two-writt WOM-code. Then, there exists a
[2n,4;2”R3,1, 2"R3,2, 2”R2,12"R2,2] four-write WOM-code of
sum-rate

R31+ R+ Ry + Rz
—_—

Proof: The proof is very similar to the one used for three-
write WOM-codes. We denote by E; |, E; , the encoding
maps of the first and second writes, and by D; |, D; , the
decoding maps of the first and second writes of the WOM-
code C;, respectively. Similarly, the encoding and decoding
maps of the WOM-code C, for the first and second writes are
denoted by E; ;, E; , and D ;, D5 », respectively. Using the
encoding and decoding maps of C;, we define the first and
second writes of our constructed four-write WOM-code as we
did for the first and second writes of the three-write WOM-
codes. The third and fourth writes are defined in a similar way,
as follows.

1) On the third write, a message m from the set

{1,... 2%} is written. Let &, ,(m)=v=(v,, . . ., v,)
and let c=((Cy,1,C12), - - + 5(Cr1,Cn2))

be the current memory-state vector. Then,

63(’”:0):((0’1,1:0'12), cee 5(0,71,110,71,2))5
where for 1<i=n, (¢, |, ¢, ,)=(1,1) if v,=1 and, otherwise,
(1,1, €'1,2)7(¢; 1, €, )- The decoding map D, is defined to
be
Ds(c):Dz,l(Cl,l'Cl,za cee acn,l'CnQ)-

2) On the fourth write, a message m from the set

{1,...,2"R >} is written. Let
Ezg(ma(cl,l'clg ----- Cn,l'cn,z)):":("l ----- Vo)
where ¢=((¢; ;, ¢;5) . . ., (C,1, €,2)) is the current

memory-state vector. Then,

64(”%0):((01,1,:01,2% cee 5(Cn,lllcn,2'))>

where for 1=is=n, (¢, ;, ¢'; ,)=(1,1) if v,=1 and, otherwise,
(c;1' ¢, 2)=(c; 15 €, 5). The decoding map D,(c) is defined, as
before, by

D 4(0)= D 2,2(01,1"01,2', B ,Cn,ll'cngy)-

The last theorem requires both the binary two-write and
ternary two-write WOM-codes to have the same number of
cells, n. However, we can construct a four-write binary
WOM-code using any two such WOM-codes, even if they do
not have the same number of cells. Suppose we have a WOM-
code over GF(3) with n, cells and binary WOM-code with n,
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cells. Both codes can be extended to use (n,,n,) cells. Then,
the construction above will give a four-write WOM-code.

Corollary.

The best achievable sum-rate of a four-write WOM-code
using this construction is (log,5+1l0g,3)/2~1.95.

Proof: The maximum value of R; ;+R; , is log, 5 and the
maximum value of R, ;+R, , is log, 3. Therefore, the maxi-
mum sum-rate of the constructed

10

log,(5) +log, (3
B+ 080 o

If we use the WOM-code over GF(3) of sum-rate 2.2205
found in the previous subsection as the WOM-code C; and the
binary two-write WOM-code of sum-rate 1.4928 found as the
WOM-code C,, then there exists a four-write WOM-code of
sum-rate (2.2205+1.4928)/2=1.8566.

C. Multiple-Write WOM-Codes

The construction of three- and four-write WOM-codes can
be easily generalized to an arbitrary number of writes. We
state the following theorem and skip its proof since it is very
similar to the proofs of the corresponding theorems for three-
and four-write WOM-codes.

Theorem 8.

LetCybean [n,2; 2" R >, 2" R *?] two-write WOM-code
over GF(3) constructed as above. Let C, be an [n,t-2; 2”
R >, ..., 2"R ¥ ] binary (t-2)-write WOM-code. Then,
there exists a

20

25

30

nR_ AnR R R
[2m,8;27%5 1,273 5,2 1 - 25, 0]

t-write WOM-code of sum-rate
35

=2
Rs1+Rs + Z Rai
=)

2
40

Theorem 14 implies that if there exists a (t-2)-write WOM-
code of sum-rate R,_, then there exists a t-write WOM-code
of sum-rate

45
B log,5+R; 2
T
. . . . 50
The following corollary summarizes the possible achievable
sum-rates of t-write WOM-codes.
Corollary.
For t=3, there exists a t-write WOM-code of sum-rate
55

=1
(27 -1-log,5+1
—_— r odd
R, = 22

Q'F — 1) log,5 + log,3
7 _1). +
L5 ORI T8 ven.

=2
272

If we use again the two-write WOM-code over GF(3) of
sum-rate 2.2205 and the binary two-write WOM-code of
sum-rate 1.4928 from Section IV, then for t=3 we obtain a
t-write WOM-code of sum-rate R,. where

65

=1
Q7 -1D-222+1
— r odd
27
7{’ = =2
Q7 -1-2.22+1.4928
— ., tfeven

=2
27

Concatenated WOM-Codes

The construction presented in the previous section pro-
vides us with a family of WOM-codes for all t=3. In this
section, we will show a general scheme to construct more
families of WOM-codes. In fact, the construction in the pre-
vious section is a special case of this general scheme.

Theorem 9.

LetC*be[m,t/2;q,,...,q,,, | binary t/2-write WOM-code
where t is an even integer. For 1=I=<t/2, let C, be an [n, 2;2"%i,
1,2"%1,2] two-write WOM-code over GF(q,), as constructed
above. Then, there exists an [nm, 2" R !, 2" R 12, ..., 2"
R Y2 2" R 22 1] binary t-write WOM-code of sum-rate

1/2

Ri1 +R;
Z xlm 12.

=1

Proof: For 1>i>t/2, let §* D ,* be the encoding, decoding
maps on the i-th write of the WOM-code C*, respectively. The
definition of £,* D * for 1>i>1/2, extends naturally to vectors
by simply invoking the maps on each entry in the vector.
Similarly, for 1=i=t/2, letus denote by E, | and E, , the encod-
ing maps of the first and second writes, and by D, ; and D, , the
decoding maps of the first and second writes of the WOM-
code Ci, respectively. We will present the specification of the
encoding and decoding maps of the constructed t-write
WOM-code.

In the following definitions of the encoding and decoding
maps, we consider the memory-state vector ¢ to have n sym-
bols of m bits each, i.e. ce(GF(2™))". For 1=i=t/2, the (2i-1)-st
write and 2i-th write are implemented as follows.

1. On the (2i-1)-st write, a message m,e{1,...,2" R >'}

is written to the memory-state vector ¢ according to

8o 1(mL,O)=E G 1 (m)0)

The memory-state vector ¢ is decoded according to
Dsis@=D (D e

On the 2i-th write, a message m,e{1, .. ., 2"%>'} is written

according

eai(m)e(eia(m D #(e).c)

and the memory-state vector ¢ is decoded according to
DD, D #c)).

We will demonstrate how this construction works in the
following example.

Example 3

Wechoose a[3,3;4,3,2] three-write WOM-code as the code
C*. This code is depicted in FIG. 4 by a state diagram of an
encoding map describing all three writes implanted in an
encoder 10 to write to memory 12. The three-bit vector in
each state is the memory-state and the number next to it is the
decoded value. We need to find three more two-write WOM-
codes over GF(4),GF(3), and GF(2). For the code C; over
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TABLE 1

SUM-RATES OF CONCATENATED WOM-CODES

Number  Achieved Maximum
of Writes New Rate New Rate
5 1.9689 log,7 +1log,5 + 1
D8 VO8IV 50431
3
6 2.1331 log,7 + log,5 +log,3
08+ 080 + 085 _ 59381
3
7 2.1723 log,7 +10g,5 + (log,5 + 1)/2
0g,7 +log,5 + (logy5 + 1)/ =22634
3
8 2.2544 log,7 + log,5 + (log,5 + log,3) /2
0g,7 +10g,5 + (log,5 +log,3)/ = 23609
3
9 2.2918 log,7 + log,5 + (log, 7 + log,5 +1)/3
08 08y (logy 08 )/ —23908
3
10 2.3466

log,7 +1og,5 + (log,7 +10g,5 +10g,3)/3
3

=2.4588

GF(4), we ran a computer search to find a two-write WOM-
code over GF(4) of sum-rate 2.6862. For the code C, over
GF(3), we use the code with sum-rate 2.22 which we found
above, and we use the binary two-write WOM-code of sum-
rate 1.4928 for the code C;. Then, the sum-rate of the six-
write WOM-code is

2.6793+2.22+1.49

3 =2.1297.

It is possible to construct a five-write WOM-code by writ-
ing a vector of n bits in the last write so its sum-rate is

2.6862+2.2205+1

3 = 1.9689.

Note that if one of the codes in the general construction is
binary then we can actually use a WOM-code that allows
more than two writes. That is, in this construction we can use
any binary multiple-write WOM-code as the WOM-code C;.
Therefore, we can generate another family of WOM-codes
for t=5. Their maximum achievable sum-rates are given by
the following formula

log,7 +10g,5 + Ry—4
Re——=

for t=5 and R,, is the maximum achievable sum-rate for a
(t-4)-write WOM-code. Similarly, the constructed codes
which we obtain using the WOM-codes found above have
sum-rates

| 2.6862+2.2205+ R,

R - ,

where R, is the best sum-rate of a constructed (t-4)-
write WOM-code. Table IV summarizes these sum-rates.
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Note that the construction is a special case of the general-
ized concatenated WOM-codes construction in which the
WOM-code C* is chosen to be a [2,2; 3, 2] binary two-write
WOM-code.

The general method described in Theorem 7 provides us
with many more families of WOM-codes. However, in order
to construct WOM-codes with high sum-rates, the WOM-
code C* has to be chosen very carefully. In particular, it is
important to choose such a WOM-code with as few cells as
possible, since the sum of all sum-rates of the non-binary
two-write WOM-codes is averaged over the number of cells
of the WOM-code C*. As the number of short WOM-codes is
small, there are only a small number of possibilities to check.
However, our search for better WOM-codes with between six
and ten writes using WOM-codes with few cells did not lead
to any better results.

Fixed-Rate WOM-Codes

The WOM-code construction for more than two writes
improved the achieved sum-rates only in the unrestricted-rate
case. In this section, we present a method to construct fixed-
rate WOM-codes. The method is recursive and is based on the
previously constructed unrestricted-rate WOM-codes.

Theorem 10.

Let C be an [n,t;27%' 2722, . . ., 2] t-write WOM-code.
Assume that for 1=i<t-1 there exists a fixed-rate WOM-code
of sum-rate R,. LetR'|,...,R',beapermutationofR,, ..., R,

suchthatR',=. .., zR';. Then, there exists a fixed-rate t-write
WOM-code of sum-rate

,
Ry

t—1

1+

i=1

iR — R 1)
R;

Proof: For simplicity, let us assume that R, = . . . 2R, as it
will be clear from the proof how to generalize to the arbitrary
case. First, we add (R ,_,-R ,),, more cells in order to write
(R ,_1—-R ), bits on the last write. This guarantees that the
rates on the last two writes are the same. Then, we add
2(R,,-R,_ /R, more cells in order to write (R,2-R,_;) n
more bits on each of the last two writes. This part of the last
two writes is invoked using the fixed-rate two-write WOM-
code of sum-rate R, and therefore the additional number of
cellsis2(R ,_,-R . )w/R,. This addition of cells guarantees
that the rates on the last three writes are all the same. In
general, for 1=i<t-1 we add i( R ,_,~ R ,_,,,)0/R, more cells
suchthat (R ,_ ~R ,_,, ;)" more bits are written on each of the
last i writes and therefore the rates on the last i+1 writes are all
the same. These bits are written using the fixed-rate i-write
WOM-code which is assumed to exist.

With the addition of these cells, the number of bits written
on the i-th write for 1=istis

i-1
Rin+ Y Ry =Ry n =Ry

J=1

Thus, the rates on all writes are the same and the generated
WOM-code is fixed-rate.
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The total number of bits we add is

—

iRei = ReivIn
R.

i

1
5
1

i=

and thus the sum-rate is

l‘-ﬂln l‘-(Rl

—1
iRei = Reiv)n

+Z R;

i=1

i-1

1+

i=1

i(ﬂrﬂ' - 7{17141)
R;

Let us demonstrate how to apply the last theorem. We start
with the three-write WOM-code. Its rates on the first, second,
and third writes are 0.6291, 0.4811, 0.5, respectively. We add
0.0189n more cells in order to guarantee that the rates on the
last two writes are the same. Then we use the fixed-rate
two-write WOM-code of sum-rate 1.4546. Hence we add

2-(0.6291 - 0.5

13530 =0.1775n

more cells, yielding a fixed-rate three-write WOM-code of
sum-rate

3-0.6291

Tioea = 1.5775.

If we used the best fixed-rate two-write WOM-code of
sum-rate 1.546 and the best three-write WOM-code of sum-
rate 1.66, then we get a fixed-rate three-write WOM-code of
sum-rate 1.6263.

Note that we could use a two-write WOM-code such that
0.0189n bits are written on its first write and 0.1291n bits are
written on its second write. This will indeed add another small
improvement to the sum-rate, however this scheme is not easy
to generalize. Our goal here is to give a general method. We
are aware that for each individual case it is possible to use
other unrestricted-rate WOM-codes that will provide a
WOM-code of the desired sum-rate with slightly fewer cells.

Now we move to consider the four-write WOM-code. Its
component rates are 0.6291,0.4811, 0.413, 1/3. We add three
more groups of cells as follows:

1) (0.413-1/3)n=0.0797n more cells, so that the last two
write have the same rate.

2) 2-(0.4811-0.413)n/1.4546=0.0936n more cells, so that
the last three writes have the same rate.

3)3-(0.6291-0.4811)n/1.5731=0.2822n more cells, so that
the last four writes have the same rate.

Then, we get a fixed-rate four-write WOM-code with sum-
rate

4-0.6291

T+ 0.0797+0.09%6+ 02823 ~ /2%

If we used the best fixed-rate two- and three-write WOM-
codes and the best unrestricted-rate four-write WOM-code,
then we obtain a fixed-rate four-write WOM-code of sum-rate
1.8249. Fixed-rate t-write WOM-code for t>4 can be simi-
larly obtained. We summarize the results for the sum-rates
that we actually found and the best ones we could find in this
method in Table 2.
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TABLE 2

SUM-RATES OF FIXED-RATE WOM-CODES

Number Achieved Maximum
of Writes Sum-rate Sum-rate

3 1.5775 1.6263

4 1.7298 1.8249

5 1.8794 1.9302

6 1.9742 2.0570

7 1.991 2.0692

8 2.0375 2.1190

9 2.0951 2.1702

10 2.1327 2.2189

Tables 3 and 4 show a comparison of the sum-rates of
unrestricted-rate and fixed-rate WOM-codes presented in this
application and the best previously known sum-rates for
2<t=<10. The column labeled “Best Prior” is the highest sum-
rate achieved by a previously reported t-write WOM-code.
The column “Achieved New Sum-rate” gives the sum-rates
that we actually obtained through application of the new
techniques. The column “Maximum New Sum-rate” lists the
maximum possible sum-rates that can be obtained using our
approach. Finally, the column “Upper Bound” gives the
maximum possible sum-rates for t-write WOM-codes.

For unrestricted-rate two-write WOM-codes, the results
were found by the computer search method. For three and
four writes, we used the WOM-codes described for multiple
writes, and for 5=t<10, we used the WOM-codes discussed
for concatenated code. For fixed-rate two-write WOM-codes,
we again used the computer search method of this Section
providing two write codes. The constructions for more than
two writes were obtained by application of Theorem 10.

TABLE 3
COMPARISON WITH KNOWN UNRESTRICTED-RATE
WOM-CODES
Number Best Achieved Maximum Upper
of Writes Prior New Sum-rate ~ New Sum-rate Bound
2 1.3707 1.4928 1.585 1.585
3 1.5302 1.6102 1.661 2
4 1.7524 1.8566 1.9534 2.3219
5 1.7524 1.9689 2.0431 2.585
6 1.7524 2.1331 2.2381 2.8074
7 1.8232 2.1723 2.2634 3
8 1.8824 2.2544 2.3609 3.1699
9 1.9535 2.2918 2.3908 3.3219
10 2.0144 2.3466 2.4588 3.4594
TABLE 4

COMPARISON WITH KNOWN FIXED-RATE WOM-CODES

Number Best Achieved Maximum Upper

of Writes Prior New Sum-rate ~ New Sum-rate Bound
2 1.343 1.4546 1.546 1.546

3 1.4348 1.5775 1.6263 1.9366

4 1.6042 1.7298 1.8249 2.2436

5 1.6279 1.8794 1.9302 2.4965

6 1.7143 1.9742 2.0570 2.7120

7 1.8232 1.991 2.0692 2.9001

8 1.8824 2.0375 2.1190 3.0664

9 1.9535 2.0951 2.1702 3.2157

10 2.0144 2.1327 2.2189 3.3520
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While specific embodiments of the present invention have
been shown and described, it should be understood that other
modifications, substitutions and alternatives are apparent to
one of ordinary skill in the art. Such modifications, substitu-
tions and alternatives can be made without departing from the
spirit and scope of the invention, which should be determined
from the appended claims.

Various features of the invention are set forth in the
appended claims.

The invention claimed is:
1. A method for writing data to a non transient medium
using WOM-codes to provide a guaranteed number of mul-
tiple writes, the method comprising steps of:
defining, in an electronic encoder, a parity check matrix H,,
for alinear code C[n k] to code the data such that the i-th
column of H,,, 1=i=n, is the i-th column of H if v,=0 and
otherwise it is a zeros column, wherein {v, v,, . . .
V, |yt 1s an ordering of a set of memory vectors Vc;

defining, in the encoder, a set Vc of memory vectors s, such
that each vector v has a rank as follows:

V. ={ve{0,1}"Irank( K )=n—k}

writing, by the encoder, a symbol to the non transient
medium over an alphabet of size IVcl.
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2. The method of claim 1, further comprising: on a second
write, writing, by the encoder, a second vector s, of n-k bits
to the non transient medium, wherein v, is the programmed
vector on the first write,

s,=H,, then E,(s,,v,)=v,+V,,

and v, is a solution of the equation H,v,=s+s,.

3. A method for decoding data encoded on a transient
medium according to claim 2, comprising reading data from
the transient medium and applying, by an electronic decoder,
adecoding map such that D,, if ¢ is the vector of programmed
cells of the transient medium, then the decoded value of the
n-k bits is given by D,(c)=H-c=H-v,+Hv,=s, +s, +5,=S,.

4. The method of claim 1, applied to a linear code, such that
the parity check matrix H,, is selected uniformly at random
and an indicator random variable X, (H) on the space of all
matrices as follows

1 ifveVe

0 otherwise

Xy(H) ={

5. The method of claim 1, wherein the non transient
medium comprises a memory having cells that can change
state from zero to one but not from one to zero except upon an
erase of the entire memory, and said writing writes the symbol
into cells without the erase of the entire memory.

6. The method of claim 1, wherein the guaranteed number
of writes is three, and said writing data comprises

1) on a first write, a message m from a set {1, ..., 2"%'} is

written in 27 cells:

€, (m)=p(e;3 1 (m)),
2)ona second write, a message m fromthe set {1,...,2"%}

is written in the 2n cells, wherein ¢ is a programmed
vector on the first write, where

& (m,c)=0(es (m 9~ (e))),

such that first the memory-state vector ¢ is converted to a
ternary vector and then the ternary vector is encoded
using the encoding E; , and the new message, producing
a new ternary memory-state vector, and subsequently
the last vector is converted to a 2n-bit vector; and

22
3) on a third write, an n-bit vector v is written, with c=
(€ 15€12)s - - - 5 (C,.1,C,, 5)) being the current memory-

state vector, and then,
Esvo)=((c'L1C"12) - - - (€%, 1,7 2))

is a vector, defined as follows: for 1=i=n, (¢, ;,¢', ,)=(1,1)if

v,=1 and otherwise (¢', ;,¢', »).

7. A method for writing data to a non transient medium
using WOM-codes to provide more than two writes, the
method comprising:

10 defining, in an electronic encoder, parity-check matrix H of
size (n-k)xn, wherein for a vector v of length n over
GF(q), let H(v) be the matrix H with zero columns
replacing the columns that correspond to the positions of
the non-zero values in v, and a set of memory vectors

15 V.9 is defined such that

V. D={ve(GF(g))"Irank( R (v))=n-k}

defining, in the encoder, a non binary two-write code
according to claim 1, wherein [n,2;|V_9|,q"*];
writing data, by the encoder, to the non transient medium
20 more than two times over the alphabet of V @
8. The method of claim 7, wherein said writing writes the
symbol into cells without the erase of the entire memory.
9. A method for writing data to a non transient medium
having q levels, where q is a prime number or a power of a
55 prime number greater than 2, using WOM-codes to provide a
guaranteed number of multiple writes, the method compris-
ing steps of:
defining, in an electronic encoder, a parity check matrix H
for a linear code C[n,k| over GF(q) with a parity-check
matrix H of size (n-k)xn to code the data such that the

>0 i-th column of H,, 1=i=<n, is the i-th column of H if v,=0
and otherwise it is a zeros column, wherein {v,, v,, ...
V, e} 18 an ordering of a set of memory vectors Ve;
defining, inthe encoder, a set Vc of memory vectors Sisuch
3 that each vector v has a rank as follows:

Vv D={ve(GF(g))" lrank(H(v))=n-k}

writing, by the encoder, a symbol to the non transient
medium over an alphabet of size IVcl.
10. The method of claim 9, wherein said writing writes the
40 symbol into cells without the erase of the entire memory.
11. The method of claim 9, wherein the linear code C[n,k]
comprises an unrestricted linear code.

#* #* #* #* #*
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